$\qquad$ ID $\qquad$

## Exam 3-80 Points

You must answer all questions. Please write your name on every page. The exam is closed book and closed notes. You may use calculators, but no cell phones. Do not use your own scratch paper.

## You must show your work to receive full credit

I have neither given nor received unauthorized aid on this examination, nor have I concealed any similar misconduct by others.

Signature $\qquad$

## Problem 1 (40 Points)

We wish to predict college outcomes using the following regression:

$$
\text { college }=\beta_{0}+\beta_{1} \text { mom_college }+\beta_{2} \text { dad_college }+u
$$

Here, college is a dummy variable taking on a value of 1 for respondents with 16 or more years of education, and zero otherwise. The dummy variables mom_college and dad_college take on a value of 1 if the mom and dad went to college, respectively, and zero otherwise.

a.) Please construct and interpret a $90 \%$ confidence interval for the intercept. Show your work! (10 Points)
b.) Please interpret the coefficient on mom_college. At the $99 \%$ confidence level, please test whether it is greater than zero using a one-sided test, and briefly interpret your result. Show your work!! (10 Points)
c.) It appears that having a mother who went to college has a larger effect on college outcomes than having a father who went to college. Please derive an equation that allows me to test whether the effect of the mother's college outcome is the same as the father's college outcome. Along with the derivation, please state the null and alternative hypotheses, and write down any Stata commands required to generate new variables and run the regression. Show your work! (10 Points)
d.) For the next few regressions, we add an effect of siblings, sibs, which is the number of siblings of the respondent. Specifically, we estimate the following:

$$
\text { college }=\beta_{0}+\beta_{1} \text { mom_college }+\beta_{2} \text { dad_college }+\beta_{3} \operatorname{sibs}+u
$$

The results are the following:


Which regression is preferred, the regression in ' 1 ' or ' 1 d '? Please test this hypothesis at the $95 \%$ level, stating your null and alternative hypotheses. Briefly interpret your result, and show your work!! ( $\mathbf{1 0}$ points) (I know this is different and that I X'd out something that you want to use. But think about it and you will get it!)
e.) You're unhappy with the regression in ' $d$ ', and produce an interaction between sibs and parental education.
college $=\beta_{0}+\beta_{1}$ mom_college $+\beta_{2}$ dad_college $+\beta_{3}$ sibs $+\beta_{4}$ mom_college $\cdot \operatorname{sibs}+\beta_{5}$ dad_college $\cdot \operatorname{sibs}+u$
where urban is a dummy variable identifying respondents from metropolitan areas.

| Source \| | SS | df | MS | Number of obs $=$ | 722 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | F( 5, 716) = | 18.43 |
| Model | 17.305119 | 5 | 3.46102379 | Prob > F | 0.0000 |
| Residual | 134.474659 | 716 | . 18781377 | R -squared = | 0.1140 |
|  |  |  |  | Adj R-squared = | 0.1078 |
| Total | 151.779778 | 721 | . 210512869 | Root MSE = | . 43337 |
| college | Coef. |  | Std. Err. | t P>\|t| [95\% Conf | Interval] |
| mom_college | . 112594 |  | $.1339742$ | XXXXXXXXXXXXXXXXXXXXXXXXXXX | XXXXXXXXXXX |
| dad_college | . 3460208 |  | . 1252459 | XXXXXXXXXXXXXXXXXXXXXXXXXXX | XXXXXXXXXXX |
| mom_college_sibs | . 0951133 |  | . 0523259 | XXXXXXXXXXXXXXXXXXXXXXXXXXX | SXXXXXXXXXX |
| dad_college_sibs | -. 0467353 |  | . 0497364 | XXXXXXXXXXXXXXXXXXXXXXXXXXX | SXXXXXXXXXX |
| sibs | -. 0343139 |  | $.0073956$ | XXXXXXXXXXXXXXXXXXXXXXXXXXX | Xxxxxxxxxxx |
| _cons | \| . 3561122 |  | . 0274761 | XXXXXXXXXXXXXXXXXXXXXXXXXXX | XXXXXXXXXXX |

Which regression is preferred, the regression in ' 1 d ' or ' 1 e '? Please test this hypothesis at the $95 \%$ level, stating your null and alternative hypotheses. Briefly interpret your result, and show your work!! ( $\mathbf{1 0}$ Points)
f.) Suppose I claim that having mother who attended college affects the relationship between siblings and the respondent's college outcome. What is the probability that I'm wrong? ( $\mathbf{1 0}$ Points)

## Problem 2 (25 Points)

a.) For this problem, we wish to associate wages with education, location, and age:

$$
\ln (\text { wage })=\beta_{0}+\beta_{1} e d u c+\beta_{2} u r b a n+\beta_{3} a g e+\beta_{4} a g e^{2}+u
$$

Here, wage is the monthly wage in dollars, urban is a dummy variable identifying respondents that live in metropolitan areas, educ is years of schooling, and age is the age of the respondent. Results:

| Source | SS | df | MS | Number of obs $=$ | 935 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | F ( 4, 930) | 43.71 |
| Model | 26.2161887 | 4 | 6.55404717 | Prob > F | 0.0000 |
| Residual | 139.440095 | 930 | . 149935586 | R -squared | 0.1583 |
|  |  |  |  | Adj R-squared = | 0.1546 |
| Total | 165.656283 | 934 | . 177362188 | Root MSE | . 38722 |
| ln_wage | Coef. | Std. | Err. | [95\% Conf. In | erval] |
| educ | . 05774 | . 0058 | 51 XXXX | SXXXXXXXXXXXXXXXX | XXXXXXXX |
| urban | . 1714169 | . 0282 | 304 XXXX | SXXXXXXXXXXXXXXXX | XXXXXXXX |
| age | . 0137273 | . 1028 | 383 XXXX | SXXXXXXXXXXXXXXXX | XXXXXXXX |
| age2 | . 0001333 | . 0015 | 446 XXXXX | SXXXXXXXXXXXXXXXX | XXXXXXXX |
| cons | 5.277044 | 1.69 | 378 XXXX | SXXXXXXXXXXXXXXXX | XXXXXXXX |

Is there an age at which wages are maximized? If so, solve for this age. If not, tell me why. Show your work!! (10 Points)
b.) Please precisely interpret the coefficient on urban. Show your work! (5 Points)
c.) What is the precise effect of going from 12 years of education (HS) to 22 years of education $(\mathrm{PhD}$ !)? Show your work! (5 Points)


|  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 0.5398 | 0 | 0.5478 |  | 0.5557 | 0.5596 |  | 5 |  |  |
|  |  | 0.5793 | 0.583 | 0 | 0 | 0.5948 | 0.5987 | 0.602 | 0.6064 | 03 |  |
|  |  | 0.6179 | 0.621 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.640 | 0.6443 | 0.6480 | 7 |
|  |  | 0 | 0 | 0 | 0.6664 | 0 | 0.6736 | 0.6772 | 6808 | 4 | 79 |
|  |  | 0.6915 | 0 | 0. | 0 | 0.7054 | 088 | 0.7123 | 7157 | 9 |  |
|  |  | 0.7257 |  | 0 | 0.7357 | 0 | 2 | 0.7454 | 6 |  | 49 |
|  |  | 0.7580 |  |  |  |  |  |  | 0.7794 |  |  |
|  |  | 0.7881 |  |  |  | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 |  |
|  |  | 0 | 0.818 | 0.8212 | 0.8238 | 0 | 0.8289 | 0.8315 | 0.8340 | 0.8365 |  |
|  |  | 0.8413 | 0.8 | 0.8461 | 0.84 | O | 0.8531 | 0.8554 | 0.8577 |  |  |
|  |  | 0.8 | 0.8 | O | O | 0. | . | 0.8770 | 0.8790 | 0.8810 | 0.8830 |
|  |  | 0 | 0.8869 | 0.8888 | 0 | 0 | 0.8944 | 0.8962 | 0.8980 | 7 |  |
|  |  | 0. | 0. | - | 0. | 0. | 0.9115 | 0.9131 | 0.9147 |  |  |
|  |  | 0 | 0 | 0. |  | 0.9251 | 0.926 | 0. | 0.9292 | 0.9306 |  |
|  |  | 0 |  | 0. |  | 0.9382 | 0.9394 |  | 8 |  |  |
|  |  | 0 | 0 | 0. | 0. | 0.9495 | 0. |  | 5 |  |  |
|  |  |  |  |  |  | 0.9591 | 0 | 0 | 61 |  |  |
|  |  |  |  |  |  |  |  |  | 0.9693 |  |  |
|  |  |  |  |  |  |  |  | 0.9750 | 6 |  |  |
|  |  |  |  |  |  |  | 0 | 0.9803 | 0.9808 | 2 |  |
|  |  |  |  | - |  | 0.9838 | 析 | 84 | 850 | 4 | 0.9857 |
|  |  | 0 |  |  |  |  |  | 0.9881 | 0.9884 |  |  |
| 2. |  | 0.98 | 0.989 | 0 |  |  |  |  | 9911 |  |  |
| 2.4 |  | 0.9 | 0.9 | 0 |  |  |  |  |  |  |  |
| 2.5 |  | 0.9 | 0. | 0 | 0 | 0. | 0.9 | 0. | 0. |  |  |
| 2. |  | 0 | 0 | 0 | 0 | 0. | 0. | 0.9961 | 0.9962 | 3 |  |
| 2 |  | 0.9965 | 0.9 | 0.996 | 0.9 | 0.996 | 0.99 | 0.99 | 0.9972 | . 9973 |  |
| 2.8 |  | 0.9974 | 0.9 | 0.9976 | 0.9 | 0.9977 | 0.9978 | 0.9 | 0.9979 | 0.9980 | 0.9981 |
| 2.9 |  | 0.9981 | 0.9982 | 0.9982 | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9986 | 86 |
| 3.0 |  | 0.9987 | 0.998 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0 | 0. 9990 |

TABLE G.3b
5\% Critical Values of the F Distribution

| Nünerator Degrees of Ereedor. |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1. | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9. | 10 |
| $\infty$ | 3.84 | 3.00 | 2.60 | 2.37 | 2.21 | 2.10 | 2.01 | 1.94 | 1.88 | 1.83 |

Example: The $5 \%$ critical value for numerator $d f=4$ and large denominator $d f(\infty)$ is 2.37 .
Source: This table was generated using the Stata ${ }^{\mathscr{D}}$ function invFtail.

